Phytoplankton and climate change in the North Atlantic

A team of UK and French scientists have shown dramatic changes in the abundance of phytoplankton in the North Atlantic over the last 60 years driven primarily by climate variability and North Atlantic warming. In particular, the scientists focused on the important group of phytoplankton collectively known as diatoms. This major phytoplankton group contributes approximately one-fifth of all of Earth’s photosynthesis and up to 30-40% of the global marine primary production each year. As such diatoms are extremely important contributors to marine primary production and to the ocean carbon cycle. In the North Atlantic and its adjacent seas, primary production is primarily driven by these diatoms which produce vast spring blooms that cover the whole ocean every year and fuel the highly productive marine food-webs found there. They also transfer a significant part of the produced energy as carbon to the deep ocean contributing to a significant drawdown of carbon from the atmosphere.

Microscopic image of diatoms. Copyright Charles Kreb

In the study the authors showed that anthropogenic warming and climate variability (including natural climate oscillations and wind) over a multidecadal scale have had important consequences for the productivity and spatial/temporal dynamics of these phytoplankton.  The authors used multidecadal diatom abundance data (>60 years) for large areas of the North Atlantic and the North Sea to show significant spatial and temporal correlations over these scales between diatoms and climate variability. They also examined 50 phytoplankton species individually to investigate seasonal and life-cycle (phenology) patterns at the species level. In summary, the study found that climate warming is having a huge impact on the total abundance of diatoms and species in the North Atlantic over the period of this study. 

Martin Edwards from Plymouth Marine Laboratory who led the study said ‘some of the most important findings in this study include showing an increasing diatom population in northerly systems, but deceasing populations in more southerly systems. We also discovered major phase shifts in diatom abundance synchronous with multidecadal trends in Atlantic climate variability that occurred after the mid-1990s’.  

Phytoplankton bloom in the Northeast Atlantic observed from space. Copyright Nasa

Over the whole area of study there has been an increase in phytoplankton biomass during spring and autumn (where diatoms dominate) with increasing temperatures in cooler regions but a decrease in phytoplankton biomass in warmer regions.  The authors suggest that this is possibly due to increased phytoplankton metabolic rates caused by warming temperatures in colder regions but conversely a decrease in nutrient supply in warmer regions (where warming can enhance stratification and limit nutrient replenishment and hence diatom growth in the surface layers).  Gregory Beaugrand from CRNS in France and a co-author of the study also said ‘that the that autumnal diatom abundance is positively correlated with Sea Surface Temperatures and the increase in Northern Hemisphere Temperatures seen over the last few decades’. The study also found that regional climate warming in some areas of the North Sea has been linked to an increase in certain diatoms that are associated with Harmful Algal Blooms (HABs). Diatom growth in such well mixed areas may be enhanced by temperature as these regions are not inhibited by stratification and hence nutrient availability. These dramatic changes in such a fundamental primary producer for marine food-webs in the North Atlantic will have large on-going ramifications for other marine life from fish to whales found in these oceans.

More information: Edwards, M., Beaugrand, G., Kléparski, L. et al. Climate variability and multi-decadal diatom abundance in the Northeast Atlantic. Commun Earth Environ 3, 162 (2022). https://doi.org/10.1038/s43247-022-00492-9

When variations in Earth’s orbit drive Phytoplankton evolution

Coccolithophores are microscopic algae that form tiny limestone plates, called coccoliths, around their single cells. The shape and size of coccoliths varies according to the species. After their death, coccolithophores sink to the bottom of the ocean and their coccoliths accumulate in sediments, which faithfully record the detailed evolution of these organisms over geological time.

A team of scientists led by CNRS researchers show, in an article published in Nature on December 1, 2021, that certain variations in Earth’s orbit have influenced the evolution of coccolithophores. To achieve this, no less that 9 million coccoliths, spanning an interval of 2.8 million years and several locations in the tropical ocean, were measured and classified using automated microscope techniques and artificial intelligence.

Coccolithophores, an important constituent of the plankton, evolved following the rhythm of Earth’s orbital eccentricity. Credit: Luc Beaufort / CNRS / CEREGE

The researchers observed that coccoliths underwent cycles of higher and lower diversity in size and shape, with rhythms of 100 and 400 thousand years. They also propose a cause: the more or less circular shape of Earth’s orbit around the Sun, which varies at the same rhythms. Thus, when Earth’s orbit is more circular, as is the case today (this is known as low eccentricity), the equatorial regions show little seasonal variation and species that are not very specialized dominate all the oceans. Conversely, as eccentricity increases and more pronounced seasons appear near the equator, coccolithophores diversify into many specialized species, but collectively produce less limestone.

The diversity of coccolithophores and their collective limestome production evolved under the influence of Earth’s orbital eccentricity, which determines the intensity of seasonal variations near the equator. On the other hand, no link to global ice volume or temperature was found. It was therefore not global climate change that dictated micro-algae evolution but perhaps the opposite during certain periods. Credit: Luc BEAUFORT / CNRS / CEREGE

Crucially, due to their abundance and global distribution, these organisms are responsible for half of the limestone (calcium carbonate, partly composed of carbon) produced in the oceans and therefore play a major role in the carbon cycle and in determining ocean chemistry. It is therefore likely that the cyclic abundance patterns of these limestone producers played a key role in ancient climates, and may explain hitherto mysterious climate variations in past warm periods.

In other words, in the absence of ice, the biological evolution of micro-algae could have set the tempo of climates. This hypothesis remains to be confirmed.

More information: Luc Beaufort et al., Cyclic evolution of phytoplankton forced by changes in tropical seasonality, Nature (2021). DOI: 10.1038/s41586-021-04195-7www.nature.com/articles/s41586-021-04195-7

Australian wildfires triggered massive Phytoplankton blooms in the Southern Ocean

Clouds of smoke and ash from wildfires that ravaged Australia in 2019 and 2020 triggered widespread phytoplankton blooms in the Southern Ocean thousands of miles downwind to the east, a new Duke University-led study by an international team of scientists finds.

The study study, published in Nature, is the first to conclusively link a large-scale response in marine life to fertilization by pyrogenic—or fire-made—iron aerosols from a wildfire.

It shows that tiny aerosol particles of iron in the windborne smoke and ash fertilized the water as they fell into it, providing nutrients to fuel blooms at a scale unprecedented in that region.

Phytoplankton require iron for photosynthesis

The study’s co-author Prof Peter Strutton, of the University of Tasmania’s Institute for Marine and Antarctic Studies, likened the phytoplankton bloom to “the entire Sahara desert turning into a moderately productive grassland for a couple of months”. “The entire Southern Ocean is basically low in iron because it’s a long way from dust sources, so any small amount of iron that gets deposited there can cause a strong response,” Strutton said.

The discovery raises intriguing new questions about the role wildfires may play in spurring the growth of microscopic marine phytoplankton, which absorb large quantities of climate-warming carbon dioxide from Earth’s atmosphere through photosynthesis and are the foundation of the oceanic food web.

A satellite image shows smoke from the 2020-21 Australian wildfires covering parts of the Southern Ocean. Credit: Japan’s National Institute of Information and Communication Technology.

Our results provide strong evidence that pyrogenic iron from wildfires can fertilize the oceans, potentially leading to a significant increase in carbon uptake by phytoplankton,” said Professor Nicolas Cassar, of Duke’s Nicholas School of the Environment.

The phytoplankton blooms triggered by the Australian wildfires were so intense and extensive that the subsequent increase in photosynthesis may have temporarily offset a substantial fraction of the fires’ CO2 emissions, he said. But it’s still unclear how much of the carbon absorbed by that event, or by blooms triggered by other wildfires, remains safely stored away in the ocean and how much is released back into the atmosphere. Determining that is the next challenge, Cassar said.

Carbon uptake

The researchers estimate the amount of carbon taken up by phytoplankton cells as a result of the bloom was equivalent to around 95% of the emissions generated by the 2019-20 bushfires.

For that carbon to be permanently removed from the atmosphere, however, the phytoplankton cells would have to sink into the deep ocean and be stored there, Strutton said.

There’s a lot of recycling of energy and biomass that happens in the surface waters. It’s likely that a lot of that carbon that was initially taken up might have been re-released to the atmosphere when those phytoplankton cells started to break down or were eaten.

Large wildfires, like the record-breaking blazes that devastated parts of Australia between 2019 and 2020 and the fires now raging in the western U.S., Siberia, the Amazon, the Mediterranean and elsewhere, are projected to occur more and more frequently with climate change, noted Weiyi Tang, a postdoctoral fellow in geosciences at Princeton University, who co-led the study as a doctoral candidate in Cassar’s lab at Duke.

These fires represent an unexpected and previously under-documented impact of climate change on the marine environment, with potential feedbacks on our global climate.

Pyrogenic aerosols are produced when trees, brush and other forms of biomass are burned. Aerosol particles are light enough to be carried in a fire’s windborne smoke and ash for months, often over long distances.

More information: Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires, Nature (2021). DOI: 10.1038/s41586-021-03805-8 , www.nature.com/articles/s41586-021-03805-8

Ocean microbes team up and cooperate to gather food when it’s scarce

What do phytoplankton do when the pickings are slim? They must continue to capture nutrients – nitrogen, phosphorus, or iron – to survive, even when these nutrients have become depleted in the sun light layers of the ocean.

One ingenious solution to this challenge is reported in Proceedings of the National Academy of Sciences. In low-nutrient environments, marine microbes can clump together and hook up with even tinier cells that have vibrating, hairlike appendages (cilia) on their surface. The beating cilia create microcurrents that can pull up to 10 times more nutrients within the microbes’ reach – thereby serving up a meal through cooperative work.

Coscinodiscus wailesii diatom (left image) and with attached Pseudovorticella coscinodisci ciliate epibionts (right image). Streak lines were derived from flows generated by the ciliate epibionts. Kanso et al, PNAS, 2021

Even if the ocean is wildly turbulent, microbes can piggyback into consortia for division of labor, says senior corresponding author John H. Costello of Providence College and the Marine Biological Laboratory (MBL), Woods Hole, where much of the research was conducted.

For all conditions but the most radically extreme mixing, these microbial cells live in fluid spaces that are smaller than the eddies caused by ocean mixing,” Costello says. “In their world, the surrounding fluid is always viscous and they do not experience turbulent eddies as humans feel them.”

The team used a technology called Particle Image Velocimetry (PIV) to measure the direction and magnitude of fluid flows around a photosynthetic marine diatom, Coscinodiscus wailesii, with and without an attached ciliate “partner,” Pseudovorticella coscinodisci. They found that fluid flows generated by ciliary beating can increase nutrient flux to the diatom’s cell surface 4-10 times greater than fluxes to the diatom alone.

This cooperative solution is one way microbes can cope in low-nutrient environments. Another previously known tactic for individual cells is sinking to greater depths, which creates relative motion between the cell and surrounding water and increases its exposure to higher nutrient concentrations.

“Sinking might work well in low-nutrient conditions where mixing will recirculate the cells back up from the depths to the sunlit layers,” Costello says. “That way, the risk to the diatom of sinking might be countered by the probability of being returned to high-light environments. But in low-mixing conditions, forming consortia with ciliates could be a more favorable solution to low nutrient availability.”

Diatoms are among the most important groups of single-celled photosynthesisers for removing carbon dioxide from the atmosphere. Thus, the study helps to illuminate ocean-atmospheric exchanges that have become increasingly important for understanding climate change.

More information and link to paper: Eva A. Kanso, Rubens M. Lopes, J. Rudi Strickler, John O. Dabiri, John H. CostelloProceedings of the National Academy of Sciences Jul 2021, 118 (29) e2018193118; DOI: 10.1073/pnas.2018193118