New study: Ocean climate and hydrodynamics drive decadal shifts in Northeast Atlantic dinoflagellates

A new paper published in Global Change Biology highlights decadal changes in dinoflagellates in the North Atlantic and long-term climate change. The new paper focuses on the impact of ocean climate and hydrodynamics on the taxonomic richness and biomass of dinoflagellates in the Northeast Atlantic. It identifies five taxonomic assemblages associated with different water masses and analyses their long-term changes in biomass and taxonomic richness. The study also examines the influence of the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation (AMO) on the assemblages. The research reveals a doubling of taxonomic richness in the region since 1958, with a subsequent rapid decline in the mid-2010s.

The research has significant implications. The study reveals that the decline in dinoflagellate biomass in the North Sea has been linked to an increase in biodiversity, which was caused by a temperature-induced northward movement of subtropical taxa along the European shelf-edge, facilitated by changes in oceanic circulation. However, major changes in North Atlantic hydrodynamics in the 2010s, such as subpolar gyre expansion and a low-salinity anomaly, stopped this movement, triggering a biodiversity collapse in the North Sea. The research also highlights that regional climate warming and changes in oceanic circulation strongly influenced shifts in dinoflagellate biomass and biodiversity. These findings have implications for understanding the complex interactions between climate, oceanic circulation, and marine ecosystems, and they emphasize the need to consider hydro-climatic variability in oceanic currents when projecting future phytoplankton changes. The study’s results provide valuable insights into the impact of climate change and ocean dynamics on marine microorganisms, with potential implications for broader marine ecosystem dynamics.

For more information on the Open Access article: Kléparski, L., Beaugrand, G., Ostle, C., Edwards, M., Skogen, M. D., Djeghri, N., & Hátún, H. (2024). Ocean climate and hydrodynamics drive decadal shifts in Northeast Atlantic dinoflagellates. Global Change Biology, 30, e17163. https://doi.org/10.1111/gcb.17163

New study on phytoplankton changes and climate from 1850-2100

Climate change is causing significant shifts in the phenology of phytoplankton communities, but current Earth System Models (ESMs) do not take into account the various phenotypes and trait groups that result from evolutionary strategies. A new study has used a species-based modelling approach, combined with large-scale plankton observations, to investigate past, contemporary, and future phenological shifts in diatoms and dinoflagellates in three key areas of the North Atlantic Ocean. The study found that the three phytoplanktonic groups exhibit coherent and different shifts in phenology and abundance. Large flattened diatoms are predicted to decline in abundance, while slow-sinking elongated diatoms and dinoflagellates are expected to increase in abundance. This may alter carbon export in this important sink region. The increase in prolates and dinoflagellates, two groups currently not considered in ESMs, may alleviate the negative influence of global climate change on oblates, which are responsible for massive peaks of biomass and carbon export in spring. The study suggests that including prolates and dinoflagellates in models may improve our understanding of the influence of global climate change on the biological carbon cycle in the oceans.

More information: Kléparski, L., Beaugrand, G., Edwards, M., & Ostle, C. (2023). Phytoplankton life strategies, phenological shifts and climate change in the North Atlantic Ocean from 1850 to 2100. Global Change Biology, 00, 1– 17. https://doi.org/10.1111/gcb.16709

Phytoplankton and climate change in the North Atlantic

A team of UK and French scientists have shown dramatic changes in the abundance of phytoplankton in the North Atlantic over the last 60 years driven primarily by climate variability and North Atlantic warming. In particular, the scientists focused on the important group of phytoplankton collectively known as diatoms. This major phytoplankton group contributes approximately one-fifth of all of Earth’s photosynthesis and up to 30-40% of the global marine primary production each year. As such diatoms are extremely important contributors to marine primary production and to the ocean carbon cycle. In the North Atlantic and its adjacent seas, primary production is primarily driven by these diatoms which produce vast spring blooms that cover the whole ocean every year and fuel the highly productive marine food-webs found there. They also transfer a significant part of the produced energy as carbon to the deep ocean contributing to a significant drawdown of carbon from the atmosphere.

Microscopic image of diatoms. Copyright Charles Kreb

In the study the authors showed that anthropogenic warming and climate variability (including natural climate oscillations and wind) over a multidecadal scale have had important consequences for the productivity and spatial/temporal dynamics of these phytoplankton.  The authors used multidecadal diatom abundance data (>60 years) for large areas of the North Atlantic and the North Sea to show significant spatial and temporal correlations over these scales between diatoms and climate variability. They also examined 50 phytoplankton species individually to investigate seasonal and life-cycle (phenology) patterns at the species level. In summary, the study found that climate warming is having a huge impact on the total abundance of diatoms and species in the North Atlantic over the period of this study. 

Martin Edwards from Plymouth Marine Laboratory who led the study said ‘some of the most important findings in this study include showing an increasing diatom population in northerly systems, but deceasing populations in more southerly systems. We also discovered major phase shifts in diatom abundance synchronous with multidecadal trends in Atlantic climate variability that occurred after the mid-1990s’.  

Phytoplankton bloom in the Northeast Atlantic observed from space. Copyright Nasa

Over the whole area of study there has been an increase in phytoplankton biomass during spring and autumn (where diatoms dominate) with increasing temperatures in cooler regions but a decrease in phytoplankton biomass in warmer regions.  The authors suggest that this is possibly due to increased phytoplankton metabolic rates caused by warming temperatures in colder regions but conversely a decrease in nutrient supply in warmer regions (where warming can enhance stratification and limit nutrient replenishment and hence diatom growth in the surface layers).  Gregory Beaugrand from CRNS in France and a co-author of the study also said ‘that the that autumnal diatom abundance is positively correlated with Sea Surface Temperatures and the increase in Northern Hemisphere Temperatures seen over the last few decades’. The study also found that regional climate warming in some areas of the North Sea has been linked to an increase in certain diatoms that are associated with Harmful Algal Blooms (HABs). Diatom growth in such well mixed areas may be enhanced by temperature as these regions are not inhibited by stratification and hence nutrient availability. These dramatic changes in such a fundamental primary producer for marine food-webs in the North Atlantic will have large on-going ramifications for other marine life from fish to whales found in these oceans.

More information: Edwards, M., Beaugrand, G., Kléparski, L. et al. Climate variability and multi-decadal diatom abundance in the Northeast Atlantic. Commun Earth Environ 3, 162 (2022). https://doi.org/10.1038/s43247-022-00492-9

Deep ocean warming as climate changes

Much of the “excess heat” stored in the subtropical North Atlantic is in the deep ocean (below 700m), new research suggests.

Oceans have absorbed about 90% of warming caused by humans. The study found that in the subtropical North Atlantic (25°N), 62% of the warming from 1850-2018 is held in the deep ocean.

The researchers – from the University of Exeter and the University of Brest – estimate that the deep ocean will warm by a further 0.2°C in the next 50 years.

Ocean warming can have a range of consequences including sea-level rise, changing ecosystems, currents and chemistry, and deoxygenation.

“As our planet warms, it’s vital to understand how the excess heat taken up by the ocean is redistributed in the ocean interior all the way from the surface to the bottom, and it is important to take into account the deep ocean to assess the growth of Earth’s ‘energy imbalance’,” said Dr Marie-José Messias, from the University of Exeter.

“As well as finding that the deep ocean is holding much of this excess heat, our research shows how ocean currents redistribute heat to different regions.

“We found that this redistribution was a key driver of warming in the North Atlantic.”

The researchers studied the system of currents known as the Atlantic Meridional Overturning Circulation (AMOC).

AMOC works like a conveyer belt, carrying warm water from the tropics north – where colder, dense water sinks into the deep ocean and spreads slowly south.

The findings highlight the importance of warming transferring by AMOC from one region to another.

Dr Messias said excess heat from the Southern Hemisphere oceans is becoming important in the North Atlantic – now accounting for about a quarter of excess heat.

The study used temperature records and chemical “tracers” – compounds whose make-up can be used to discover past changes in the ocean.

The paper, published in the Nature journal Communications Earth & Environment, is entitled: “The redistribution of anthropogenic excess heat is a key driver of warming in the North Atlantic.”

More information: Messias, MJ., Mercier, H. The redistribution of anthropogenic excess heat is a key driver of warming in the North Atlantic. Commun Earth Environ 3, 118 (2022). https://doi.org/10.1038/s43247-022-00443-4

Warming oceans are getting louder

FASTER SOUND TRANSMISSION IN THE OCEANS DUE TO CLIMATE CHANGE WILL CHANGE THE UNDERWATER SOUNDSCAPE MARINE ORGANISMS RELY ON FOR SURVIVAL AND REPRODUCTION IN COMING DECADES.

Climate change will significantly alter how sound travels underwater, potentially affecting natural soundscapes as well as accentuating human-generated noise, according to a new global study that identified future ocean “acoustic hotspots.” These changes to ocean soundscapes could impact essential activities of marine life.

In warmer water, sound waves propagate faster and last longer before dying away.

“We calculated the effects of temperature, depth and salinity based on public data to model the soundscape of the future,” said Alice Affatati, an bioacoustics researcher at the Memorial University of Newfoundland and Labrador in St. John’s, Canada, and lead author of the new study.

Warmer oceans mean sound will travel faster, impacting marine animals who depend on sounds to find each other and eat. The largest effect on the underwater speed of sound can be expected east of Greenland and off Newfoundland in the Atlantic, according to a new study in the AGU journal Earth’s Future.
Credit: NOAA

Two hotspots, in the Greenland Sea and a patch of the northwestern Atlantic Ocean east of Newfoundland, can expect the most change at 50 and 500 meter depths, the new study projected. The average speed of sound is likely to increase by more than 1.5%, or approximately 25 meters per second (55 miles per hour) in these waters from the surface to depths of 500 meters (1,640 feet), by the end of the century, given continued high greenhouse gas emissions (RCP8.5).

“The major impact is expected in the Arctic, where we know already there is amplification of the effects of climate change now. Not all the Arctic, but one specific part where all factors play together to give a signal that, according to the model predictions, overcomes the uncertainty of the model itself,” said author Stefano Salon, a researcher at the National Institute of Oceanography and Applied Geophysics in Trieste, Italy.

The ocean soundscape is a cacophony of vibrations produced by living organisms, natural phenomena like waves and cracking ice, and ship traffic and resource extraction. Sound speed at 50 meters depth ranges from 1,450 meters per second in the polar regions to 1,520 meters per second in equatorial waters (3,243 to 3,400 miles per hour, respectively).

Many marine animals use sound to communicate with each other and navigate their underwater world. Changing the sound speed can impact their ability to feed, fight, find mates, avoid predators and migrate, the authors said.

CHANGING SOUNDSCAPES

In addition to the notable hotpots around Greenland and in the northwestern Atlantic Ocean, the new study found a 1% sound speed increase, more than 15 meters per second, at 50 m in the Barents Sea, northwestern Pacific, and in the Southern Ocean (between 0 and 70E), and at 500 m in the Arctic Ocean, Gulf of Mexico, and southern Caribbean Sea.

Temperature, pressure with increasing depth and salinity all affect how fast and how far sound travels in water. In the new study, the researchers focused on hotspots where the climate signal stood out clearly from the model uncertainty and was larger than seasonal variability.

The new study also modeled common vocalisations, under the projected future conditions, of the North Atlantic right whale, a critically endangered species inhabiting both north Atlantic acoustic hotspots. The whales’ typical “upcall” at 50 Hertz is likely to propagate farther in a warmer future ocean, the researchers found.

“We chose to talk about one megafauna species, but many trophic levels in the ocean are affected by the soundscape or use sound,” Affatati said. “All these hotspots are locations of great biodiversity.”

Future work will combine the global soundscape with other maps of anthropogenic impacts in the oceans to pinpoint areas of combined stressors, or direct needed observational research.

“With complicated problems like climate change, to combine different approaches is the way to go,” said author Chiara Scaini, an environmental engineer at the National Institute of Oceanography and Applied Geophysics.

More information: Affatati, A., Scaini, C., & Salon, S. (2022). Ocean sound propagation in a changing climate: Global sound speed changes and identification of acoustic hotspots. Earth’s Future, 10, e2021EF002099. https://doi.org/10.1029/2021EF002099

When variations in Earth’s orbit drive Phytoplankton evolution

Coccolithophores are microscopic algae that form tiny limestone plates, called coccoliths, around their single cells. The shape and size of coccoliths varies according to the species. After their death, coccolithophores sink to the bottom of the ocean and their coccoliths accumulate in sediments, which faithfully record the detailed evolution of these organisms over geological time.

A team of scientists led by CNRS researchers show, in an article published in Nature on December 1, 2021, that certain variations in Earth’s orbit have influenced the evolution of coccolithophores. To achieve this, no less that 9 million coccoliths, spanning an interval of 2.8 million years and several locations in the tropical ocean, were measured and classified using automated microscope techniques and artificial intelligence.

Coccolithophores, an important constituent of the plankton, evolved following the rhythm of Earth’s orbital eccentricity. Credit: Luc Beaufort / CNRS / CEREGE

The researchers observed that coccoliths underwent cycles of higher and lower diversity in size and shape, with rhythms of 100 and 400 thousand years. They also propose a cause: the more or less circular shape of Earth’s orbit around the Sun, which varies at the same rhythms. Thus, when Earth’s orbit is more circular, as is the case today (this is known as low eccentricity), the equatorial regions show little seasonal variation and species that are not very specialized dominate all the oceans. Conversely, as eccentricity increases and more pronounced seasons appear near the equator, coccolithophores diversify into many specialized species, but collectively produce less limestone.

The diversity of coccolithophores and their collective limestome production evolved under the influence of Earth’s orbital eccentricity, which determines the intensity of seasonal variations near the equator. On the other hand, no link to global ice volume or temperature was found. It was therefore not global climate change that dictated micro-algae evolution but perhaps the opposite during certain periods. Credit: Luc BEAUFORT / CNRS / CEREGE

Crucially, due to their abundance and global distribution, these organisms are responsible for half of the limestone (calcium carbonate, partly composed of carbon) produced in the oceans and therefore play a major role in the carbon cycle and in determining ocean chemistry. It is therefore likely that the cyclic abundance patterns of these limestone producers played a key role in ancient climates, and may explain hitherto mysterious climate variations in past warm periods.

In other words, in the absence of ice, the biological evolution of micro-algae could have set the tempo of climates. This hypothesis remains to be confirmed.

More information: Luc Beaufort et al., Cyclic evolution of phytoplankton forced by changes in tropical seasonality, Nature (2021). DOI: 10.1038/s41586-021-04195-7www.nature.com/articles/s41586-021-04195-7

Humans Guilty of Breaking an Fundamental Oceanic Law of Nature

A new international study carried out by the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona (ICTA-UAB) has examined the distribution of biomass across all life in the oceans, from bacteria to whales. Their quantification of human impact reveals a fundamental alteration to one of life’s largest scale patterns.

As policymakers assemble in Glasgow for the UN Climate Change Conference, there is growing recognition that human impacts on the environment are going global and growing urgent. However, gaining a quantitative perspective on these impacts has remained elusive.

Scientists from the ICTA-UAB in Spain, the Max Planck Institute for Mathematics in the Sciences in Germany, Queensland University of Technology in Australia, Weizmann Institute of Science in Israel, and McGill University in Canada have used advances in ocean observation and large meta-analyses to show that human impacts have already had major consequences for the larger oceanic species, and have dramatically changed one of life’s largest scale patterns – a pattern encompassing the entire ocean’s biodiversity, from bacteria to whales.

Early samples of marine plankton biomass from 50 years ago led researchers to hypothesize that roughly equal amounts of biomass occur at all sizes. For example, although bacteria are 23 orders of magnitude smaller than a blue whale, they are also 23 orders of magnitude more abundant. This size-spectrum hypothesis has since remained unchallenged, even though it was never verified globally from bacteria to whales. The authors of the study, published in the journal Science Advances, sought to test this hypothesis on a global scale for the first time. They used historical reconstructions and marine ecosystem models to estimate biomass before industrial scale fishing got underway (pre-1850) and compared this data to the present-day.

Figure about the research. Credit: Ian Hatton, Eric Galbraith et al.

“One of the biggest challenges to comparing organisms spanning bacteria to whales is the enormous differences in scale,” recalls ICTA researcher and lead author Dr. Ian Hatton, currently based at the Max Planck Institute for Mathematics in the Sciences. “The ratio of their masses is equivalent to that between a human being and the entire Earth. We estimated organisms at the small end of the scale from more than 200,000 water samples collected globally, but larger marine life required completely different methods.”

Their approach focused on 12 major groups of aquatic life over roughly 33,000 grid points of the ocean. Evaluating the pre-industrial ocean conditions (pre-1850) largely confirmed the original hypothesis: there is a remarkably constant biomass across size classes.

“We were amazed to see that each order of magnitude size class contains approximately 1 gigaton of biomass globally,” remarks co-author Dr. Eric Galbraith of the ICTA-UAB and a current professor at McGill University. However, he was quick to point out exceptions at either extreme. While bacteria are over-represented in the cold, dark regions of the ocean, the largest whales are relatively rare, thus highlighting exceptions from the original hypothesis.

In contrast with an even biomass spectrum in the pre-1850 ocean, an investigation of the spectrum at present revealed human impacts on ocean biomass through a new lens. While fishing and whaling only account for less than 3 percent of human food consumption, their effect on the biomass spectrum is devastating: large fish and marine mammals such as dolphins have experienced a biomass loss of 2 Gt (60% reduction), with the largest whales suffering an unsettling almost 90% decimation. The authors estimate that these losses already outpace potential biomass losses even under extreme climate change scenarios.

“Humans have impacted the ocean in a more dramatic fashion than merely capturing fish. It seems that we have broken the size spectrum – one of the largest power law distributions known in nature,

reflects ICTA researcher and co-author Dr. Ryan Heneghan. These results provide a new quantitative perspective on the extent to which anthropogenic activities have altered life at the global scale. 

More information: The global ocean size spectrum from bacteria to whales (2021). Hatton, Heneghan, Bar-On and Galbraith, 2021, Science Advances.
DOI: 10.1126/sciadv.abh3732

The Ocean Decade at COP 26

COP26 is the 2021 United Nations climate change conference

For nearly three decades the UN has been bringing together almost every country on earth for global climate summits – called COPs – which stands for ‘Conference of the Parties’. In that time climate change has gone from being a fringe issue to a global priority. Specifically part of the COP conference is focused on our oceans and seas. Part of the COP discussions includes the ‘Ocean Decade’.

What is the Ocean Decade?


The Ocean Decade provides a ‘once-in a-lifetime’ opportunity to create a new foundation across the
science-policy interface to strengthen the management of the ocean and coasts for the benefit of humanity and to mitigate the impacts of climate change. The Ocean Decade Implementation Plan outlines ten Decade Challenges, representing the most immediate and pressing needs of the Decade.

Link to the plan below:

Marine Plankton helps produce clouds, but existing clouds keep new ones at bay

Marine plankton breathe more than 20 million tons of sulfur into the air every year, mostly in the form of dimethyl sulfide (DMS). In the air, this chemical can transform into sulfuric acid, which helps produce clouds by giving a site for water droplets to form. Over the scale of the world’s oceans, this process affects the entire climate.

But new research from the University of Wisconsin–Madison, the National Oceanic and Atmospheric Administration and others reveals that more than one-third of the DMS emitted from the sea can never help new clouds form because it is lost to the clouds themselves. The new findings significantly alter the prevailing understanding of how marine life influences clouds and may change the way scientists predict how cloud formation responds to changes in the oceans.

NOAA

 By reflecting sunlight back into space and controlling rainfall, clouds play significant roles in the global climate. Accurately predicting them is essential to understanding the effects of climate change.

More information: Novak et al PNAS October 19, 2021 118 (42) e2110472118; https://doi.org/10.1073/pnas.2110472118

Australian wildfires triggered massive Phytoplankton blooms in the Southern Ocean

Clouds of smoke and ash from wildfires that ravaged Australia in 2019 and 2020 triggered widespread phytoplankton blooms in the Southern Ocean thousands of miles downwind to the east, a new Duke University-led study by an international team of scientists finds.

The study study, published in Nature, is the first to conclusively link a large-scale response in marine life to fertilization by pyrogenic—or fire-made—iron aerosols from a wildfire.

It shows that tiny aerosol particles of iron in the windborne smoke and ash fertilized the water as they fell into it, providing nutrients to fuel blooms at a scale unprecedented in that region.

Phytoplankton require iron for photosynthesis

The study’s co-author Prof Peter Strutton, of the University of Tasmania’s Institute for Marine and Antarctic Studies, likened the phytoplankton bloom to “the entire Sahara desert turning into a moderately productive grassland for a couple of months”. “The entire Southern Ocean is basically low in iron because it’s a long way from dust sources, so any small amount of iron that gets deposited there can cause a strong response,” Strutton said.

The discovery raises intriguing new questions about the role wildfires may play in spurring the growth of microscopic marine phytoplankton, which absorb large quantities of climate-warming carbon dioxide from Earth’s atmosphere through photosynthesis and are the foundation of the oceanic food web.

A satellite image shows smoke from the 2020-21 Australian wildfires covering parts of the Southern Ocean. Credit: Japan’s National Institute of Information and Communication Technology.

Our results provide strong evidence that pyrogenic iron from wildfires can fertilize the oceans, potentially leading to a significant increase in carbon uptake by phytoplankton,” said Professor Nicolas Cassar, of Duke’s Nicholas School of the Environment.

The phytoplankton blooms triggered by the Australian wildfires were so intense and extensive that the subsequent increase in photosynthesis may have temporarily offset a substantial fraction of the fires’ CO2 emissions, he said. But it’s still unclear how much of the carbon absorbed by that event, or by blooms triggered by other wildfires, remains safely stored away in the ocean and how much is released back into the atmosphere. Determining that is the next challenge, Cassar said.

Carbon uptake

The researchers estimate the amount of carbon taken up by phytoplankton cells as a result of the bloom was equivalent to around 95% of the emissions generated by the 2019-20 bushfires.

For that carbon to be permanently removed from the atmosphere, however, the phytoplankton cells would have to sink into the deep ocean and be stored there, Strutton said.

There’s a lot of recycling of energy and biomass that happens in the surface waters. It’s likely that a lot of that carbon that was initially taken up might have been re-released to the atmosphere when those phytoplankton cells started to break down or were eaten.

Large wildfires, like the record-breaking blazes that devastated parts of Australia between 2019 and 2020 and the fires now raging in the western U.S., Siberia, the Amazon, the Mediterranean and elsewhere, are projected to occur more and more frequently with climate change, noted Weiyi Tang, a postdoctoral fellow in geosciences at Princeton University, who co-led the study as a doctoral candidate in Cassar’s lab at Duke.

These fires represent an unexpected and previously under-documented impact of climate change on the marine environment, with potential feedbacks on our global climate.

Pyrogenic aerosols are produced when trees, brush and other forms of biomass are burned. Aerosol particles are light enough to be carried in a fire’s windborne smoke and ash for months, often over long distances.

More information: Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires, Nature (2021). DOI: 10.1038/s41586-021-03805-8 , www.nature.com/articles/s41586-021-03805-8