Phytoplankton and climate change in the North Atlantic

A team of UK and French scientists have shown dramatic changes in the abundance of phytoplankton in the North Atlantic over the last 60 years driven primarily by climate variability and North Atlantic warming. In particular, the scientists focused on the important group of phytoplankton collectively known as diatoms. This major phytoplankton group contributes approximately one-fifth of all of Earth’s photosynthesis and up to 30-40% of the global marine primary production each year. As such diatoms are extremely important contributors to marine primary production and to the ocean carbon cycle. In the North Atlantic and its adjacent seas, primary production is primarily driven by these diatoms which produce vast spring blooms that cover the whole ocean every year and fuel the highly productive marine food-webs found there. They also transfer a significant part of the produced energy as carbon to the deep ocean contributing to a significant drawdown of carbon from the atmosphere.

Microscopic image of diatoms. Copyright Charles Kreb

In the study the authors showed that anthropogenic warming and climate variability (including natural climate oscillations and wind) over a multidecadal scale have had important consequences for the productivity and spatial/temporal dynamics of these phytoplankton.  The authors used multidecadal diatom abundance data (>60 years) for large areas of the North Atlantic and the North Sea to show significant spatial and temporal correlations over these scales between diatoms and climate variability. They also examined 50 phytoplankton species individually to investigate seasonal and life-cycle (phenology) patterns at the species level. In summary, the study found that climate warming is having a huge impact on the total abundance of diatoms and species in the North Atlantic over the period of this study. 

Martin Edwards from Plymouth Marine Laboratory who led the study said ‘some of the most important findings in this study include showing an increasing diatom population in northerly systems, but deceasing populations in more southerly systems. We also discovered major phase shifts in diatom abundance synchronous with multidecadal trends in Atlantic climate variability that occurred after the mid-1990s’.  

Phytoplankton bloom in the Northeast Atlantic observed from space. Copyright Nasa

Over the whole area of study there has been an increase in phytoplankton biomass during spring and autumn (where diatoms dominate) with increasing temperatures in cooler regions but a decrease in phytoplankton biomass in warmer regions.  The authors suggest that this is possibly due to increased phytoplankton metabolic rates caused by warming temperatures in colder regions but conversely a decrease in nutrient supply in warmer regions (where warming can enhance stratification and limit nutrient replenishment and hence diatom growth in the surface layers).  Gregory Beaugrand from CRNS in France and a co-author of the study also said ‘that the that autumnal diatom abundance is positively correlated with Sea Surface Temperatures and the increase in Northern Hemisphere Temperatures seen over the last few decades’. The study also found that regional climate warming in some areas of the North Sea has been linked to an increase in certain diatoms that are associated with Harmful Algal Blooms (HABs). Diatom growth in such well mixed areas may be enhanced by temperature as these regions are not inhibited by stratification and hence nutrient availability. These dramatic changes in such a fundamental primary producer for marine food-webs in the North Atlantic will have large on-going ramifications for other marine life from fish to whales found in these oceans.

More information: Edwards, M., Beaugrand, G., Kléparski, L. et al. Climate variability and multi-decadal diatom abundance in the Northeast Atlantic. Commun Earth Environ 3, 162 (2022).

Ocean microbes team up and cooperate to gather food when it’s scarce

What do phytoplankton do when the pickings are slim? They must continue to capture nutrients – nitrogen, phosphorus, or iron – to survive, even when these nutrients have become depleted in the sun light layers of the ocean.

One ingenious solution to this challenge is reported in Proceedings of the National Academy of Sciences. In low-nutrient environments, marine microbes can clump together and hook up with even tinier cells that have vibrating, hairlike appendages (cilia) on their surface. The beating cilia create microcurrents that can pull up to 10 times more nutrients within the microbes’ reach – thereby serving up a meal through cooperative work.

Coscinodiscus wailesii diatom (left image) and with attached Pseudovorticella coscinodisci ciliate epibionts (right image). Streak lines were derived from flows generated by the ciliate epibionts. Kanso et al, PNAS, 2021

Even if the ocean is wildly turbulent, microbes can piggyback into consortia for division of labor, says senior corresponding author John H. Costello of Providence College and the Marine Biological Laboratory (MBL), Woods Hole, where much of the research was conducted.

For all conditions but the most radically extreme mixing, these microbial cells live in fluid spaces that are smaller than the eddies caused by ocean mixing,” Costello says. “In their world, the surrounding fluid is always viscous and they do not experience turbulent eddies as humans feel them.”

The team used a technology called Particle Image Velocimetry (PIV) to measure the direction and magnitude of fluid flows around a photosynthetic marine diatom, Coscinodiscus wailesii, with and without an attached ciliate “partner,” Pseudovorticella coscinodisci. They found that fluid flows generated by ciliary beating can increase nutrient flux to the diatom’s cell surface 4-10 times greater than fluxes to the diatom alone.

This cooperative solution is one way microbes can cope in low-nutrient environments. Another previously known tactic for individual cells is sinking to greater depths, which creates relative motion between the cell and surrounding water and increases its exposure to higher nutrient concentrations.

“Sinking might work well in low-nutrient conditions where mixing will recirculate the cells back up from the depths to the sunlit layers,” Costello says. “That way, the risk to the diatom of sinking might be countered by the probability of being returned to high-light environments. But in low-mixing conditions, forming consortia with ciliates could be a more favorable solution to low nutrient availability.”

Diatoms are among the most important groups of single-celled photosynthesisers for removing carbon dioxide from the atmosphere. Thus, the study helps to illuminate ocean-atmospheric exchanges that have become increasingly important for understanding climate change.

More information and link to paper: Eva A. Kanso, Rubens M. Lopes, J. Rudi Strickler, John O. Dabiri, John H. CostelloProceedings of the National Academy of Sciences Jul 2021, 118 (29) e2018193118; DOI: 10.1073/pnas.2018193118

Oceans’ microscopic plants known as diatoms capture carbon dioxide via biophysical pathways

Diatoms are tiny unicellular plants — no bigger than half a millimeter — which inhabit the surface water of the world’s oceans where sunlight penetration is plenty. Despite their modest size, they are one of the world’s most powerful resources for removing carbon dioxide (CO2) from the atmosphere. They currently remove, or “fix,” 10-20 billion metric tons of CO2 every year by the process of photosynthesis. But not much is known about which biological mechanisms diatoms use, and whether these processes might become less effective with rising ocean acidity, temperatures, and, in particular, CO2 concentrations. A new study shows that diatoms predominantly use one pathway to concentrate CO2 at the vicinity of carbon fixing enzyme and that this continues to operate even at higher CO2 concentrations.

“We show that marine diatoms are super smart in fixing atmospheric CO2 even at the present-day level of CO2 — and the variability in surface seawater CO2 levels did not impact the gene expression and abundance of the five key enzymes used in carbon fixation,” says the group leader of the study, Dr Haimanti Biswas from the National Institute of Oceanography-CSIR (Council of Scientific and Industrial Research), India. “This answers a key question about how marine diatoms may respond to the future increase in atmospheric CO2 levels.”

Centric diatoms

The plant kingdom has evolved a wide range of mechanisms for concentrating CO2 from the air, or water, and transforming it into organic carbon. In this way, plants convert CO2 into glucose and other carbohydrates, which they use as building blocks and energy storage. But these different mechanisms have varied strengths and weaknesses. Somewhat ironically, the only carbon-fixing enzyme, RuBisCO, is notoriously inefficient at fixing CO2 and hence plants need to keep CO2 levels high In the vicinity of this enzyme.

To better understand which mechanism diatoms use to concentrate CO2, Biswas and her collaborators, Drs Chris Bowler and Juan Jose Pierella Karluich from the Institut de Biologie de I’Ecole Normale Supérieure, Paris, France, mined a data set from the Tara Oceans research expedition. The international Tara expedition collected marine plankton samples from around the world over several years (2009 to 2013). These included more than 200 metagenomes (which show the abundance of the genes responsible for the five key enzymes) and over 220 metatranscriptomes (showing expression of the genes for the five key enzymes) from diatoms of different size classes.

Biswas and her collaborators were particularly interested in how often the genes of five key carbon-fixing enzymes are present, and whether there were any differences in their abundance and expression levels depending on location and conditions. Across all of the samples measured, one enzyme was roughly ten times more abundant than any of the other enzymes. This enzyme — called carbonic anhydrase — is especially informative because it also confirms that diatoms are actively pumping in dissolved CO2 inside the cell, as opposed to biochemically transforming CO2 first.

The team also observed complex different patterns of the key enzymes’ gene expression, which varied depending on latitude and temperature. The researchers hope to learn more using new datasets from more widely-traveled future expeditions.

“So far, our study indicates that despite variability in CO2 levels, these tiny autotrophs are highly efficient in concentrating CO2 inside the cell,” says Biswas. “That’s the probable reason for their ability to fix nearly one-fifth of the global carbon fixation on earth.”

More information: