About

PROVIDING INFORMATION ON PELAGIC ECOLOGY AND OCEAN BIODIVERSITY

Why are pelagic ecosystems important?

The marine pelagic realm (the open ocean) is the largest ecological system on our planet; occupying 71% of the planetary surface and a major part of the Earth’s overall biosphere. The word pelagic is derived from the Greek work pélagos, meaning ‘open ocean‘.

Within the sunlit layers of this huge ocean realm (the epipelagic zone) biological production, biogeochemical cycles and marine food-webs are maintained by the inhabiting planktonic organisms.

Plankton at the base of the marine food web are made up of the free floating plant life of the sea (phytoplankton) and the animal plankton (zooplankton) which power marine ecosystems around the world by providing food and energy for other marine life. The vast majority of plankton are microscopic but they can reach up to 2 m in diameter in the form of large jellyfish. The word plankton derives from the Greek planktos meaning ‘to drift’. The productivity of marine ecosystems in terms of the size of fish and shellfish resources as well as the abundance of marine wildlife (e.g. seabirds and marine mammals) is highly dependent on variations in the abundance, timing and composition of the plankton.

Pelagic ecosystems also play a crucial role in climate change through the export of the important greenhouse gas CO2 to the deep ocean by carbon sequestration in what is known as the ‘biological pump’ and are also responsible for the 50% of the world’s oxygen production. Plankton can also be said to indirectly drive modern civilisations by providing us with the oil and gas deposits we use today. This comes from the huge accumulation of carbon from plankton on the seafloor over geological time. Without plankton the Earth would be devoid of marine ecosystem services (valued at $21 trillion per annum) such as; fishery and shellfish production, nutrient cycling, gas production and climate regulation.


Pelagic ecosystems play a fundamental role in modulating the global environment via its regulatory effects on the Earth’s climate. Changes caused by increased warming on marine pelagic communities are likely to have important consequences on ecological structure and function thereby leading to significant feedbacks on the Earth’s climate system.

Contact us:

info@pelasphere.com

Recent Posts

Marine Plankton helps produce clouds, but existing clouds keep new ones at bay

Marine plankton breathe more than 20 million tons of sulfur into the air every year, mostly in the form of dimethyl sulfide (DMS). In the air, this chemical can transform into sulfuric acid, which helps produce clouds by giving a site for water droplets to form. Over the scale of the world’s oceans, this process … Continue reading Marine Plankton helps produce clouds, but existing clouds keep new ones at bay

Australian wildfires triggered massive Phytoplankton blooms in the Southern Ocean

Clouds of smoke and ash from wildfires that ravaged Australia in 2019 and 2020 triggered widespread phytoplankton blooms in the Southern Ocean thousands of miles downwind to the east, a new Duke University-led study by an international team of scientists finds. The study study, published in Nature, is the first to conclusively link a large-scale … Continue reading Australian wildfires triggered massive Phytoplankton blooms in the Southern Ocean

Ocean microbes team up and cooperate to gather food when it’s scarce

What do phytoplankton do when the pickings are slim? They must continue to capture nutrients – nitrogen, phosphorus, or iron – to survive, even when these nutrients have become depleted in the sun light layers of the ocean. One ingenious solution to this challenge is reported in Proceedings of the National Academy of Sciences. In low-nutrient … Continue reading Ocean microbes team up and cooperate to gather food when it’s scarce

Predicting the future of cod stocks in the North Atlantic

New fisheries management planning tool developed with fewer stocks expected The future of cod stocks in the North Sea and the Barents Sea may be much easier to predict than before. This is the result of an international research project led by the Helmholtz-Zentrum Hereon and its Institute of Coastal Systems – Analysis and Modeling. … Continue reading Predicting the future of cod stocks in the North Atlantic

More Posts