Will climate change outpace species adaptation?

Species evolve heat tolerance more slowly than cold tolerance

Many species might be left vulnerable in the face of climate change, unable to adapt their physiologies to respond to rapid global warming. According to a team of international researchers, species evolve heat tolerance more slowly than cold tolerance, and the level of heat they can adapt to has limits.

In a study published in the Nature Communications, McGill professor Jennifer Sunday and her co-authors wanted to understand how species’ thermal limits have evolved. To examine variation across the tree of life, the researchers developed the largest available database compiling thermal tolerances for all types of organisms (GlobTherm database).

Migrating mullet

The researchers found that first and foremost, a species’ thermal tolerance is linked to the current climate where they live. “It’s logical that thermal limits mostly match a species’ present-day climate but tracing the evolutionary history of thermal limits can reveal how species got to be where they are today,” says Sunday, an Assistant Professor in the Department of Biology.

The researchers also found that tolerance to cold has evolved much faster than tolerance to heat, particularly in endotherms as compared to ectotherms and plants. Endothermic animals are those that generate metabolic heat to regulate their own body temperature – for example, mammals and birds – while ectothermic animals are those that regulate their body temperature using external heat sources, like reptiles, fishes and invertebrates.

One cause of this disparity could be that heat tolerance has reached an evolutionary barrier, called an ‘attractor,’ beyond which further evolution is constrained or selected against. “This is very concerning because it suggests that the vast majority of species will not be able to adapt fast enough to survive the unprecedented rate of contemporary climate change,” says co-author Joanne Bennett of Leipzig University and University of Canberra.

The results of this study are particularly relevant to conservation management, say the researchers. Protecting and creating areas that provide refuges for biodiversity from upper temperature extremes is a key strategy for conservation managers.

More information: DOI: https://doi.org/10.1038/s41467-021-21263-8

New open access research paper on plankton biogeography in the North Atlantic

New research paper: Plankton biogeography in the North Atlantic Ocean and its adjacent seas: Species assemblages and environmental signatures

Loïck Kléparski, Grégory Beaugrand and Martin Edwards

Ecology and Evolution 2021; 00:1-15. DOI: 10.1002/ece3.7406

Plankton biodiversity is a key component of marine pelagic ecosystems. They are at the base of the food web, control the productivity of marine ecosystems, and provide many provisioning and regulating ecological services. It is therefore important to understand how plankton are organized in both space and time.

Abstract:

Here, we use data of varying taxonomic resolution, collected by the Continuous Plankton Recorder (CPR) survey, to map phytoplankton and zooplankton biodiversity in the North Atlantic and its adjacent seas. We then decompose biodiversity into 24 species assemblages and investigate their spatial distribution using ecological units and ecoregions recently proposed. Finally, we propose a descriptive method, which we call the environmental chromatogram, to characterize the environmental signature of each plankton assemblage. The method is based on a graphic that identifies where species of an assemblage aggregate along an environmental gradient composed of multiple ecological dimensions. The decomposition of the biodiversity into species assemblages allows us to show (a) that most marine regions of the North Atlantic are composed of coenoclines (i.e., gradients of biocoenoses or communities) and (b) that the overlapping spatial distribution of assemblages is the result of their environmental signatures. It follows that neither the ecoregions nor the ecological units identified in the North Atlantic are characterized by a unique assemblage but instead by a mosaic of assemblages that overlap in many places.

Spatial distribution of total
plankton taxonomic richness in the North Atlantic

Get the open access paper here: https://onlinelibrary.wiley.com/doi/10.1002/ece3.7406