Arctic Climate Change Update 2021: Arctic warming three times faster than the planet

Arctic Monitoring and Assessment Programme (AMAP)

The Arctic has warmed three times more quickly than the planet as a whole, and faster than previously thought according to the newly published ‘Arctic Climate Change update 2021’.

Arctic sea ice looks set to be an early victims of rising temperatures, with each fraction of a degree making a big difference: the chance of it disappearing entirely in summer is 10 times greater if Earth warms by 2 degrees Celsius above pre-industrial levels compared to 1.5C, the goal set by the 2015 Paris Accord.

The finding comes from the Arctic Monitoring and Assessment Programme (AMAP) in their new report.

In less than half a century, from 1971 to 2019, the Arctic’s average annual temperature rose by 3.1C, compared to 1C for the planet as a whole.

That’s more than previously suspected. In a 2019 report on Earth’s frozen spaces, the UN’s Intergovernmental Panel on Climate Change (IPCC) concluded that Arctic surface air temperature has likely increased “by more than double the global average”.

According to researchers, a turning point came in 2004 when the temperature in the Arctic surged for largely unexplained reason.

Since then, warming has continued at a rate 30 percent higher than in previous decades.

Warming has immediate consequences for the Arctic ecosystem, including changes in habitat, food habits and interactions between animals and the migration of some species.

The warming and freshening of the Arctic Ocean directly and indirectly affect the lifecycles of marine species, leading to changes in seasonality, range shifts, and broad changes in ocean ecosystems.

The decline in sea ice affects marine ecosystems through changes in the open water areas and increases in the length of the open water period (both of which affect phytoplankton and ice algae, including the timing of phytoplankton blooms), as well as under-ice productivity and diversity. These changes are having cascading effects through ecosystems, with widespread impacts on the distribution, seasonality, and abundance of a variety of species.

Migrating narwhals

Satellite data show an increasing trend in primary production in all regions of the Arctic Ocean over the past two decades, explained by complex changes in light and nutrient conditions. The consequences of warming near the ocean surface on primary producers in the surface and subsurface ocean layers are still poorly understood, and there is new evidence that dominant Arctic phytoplankton species may be able to adapt to higher temperatures.

Phytoplankton bloom in northern Norway. NASA

Changes in the Arctic Ocean gateways

Warmer waters from the Pacific and Atlantic are also pushing farther into the Arctic Ocean, with widespread impacts on ocean ecosystems. The composition of Arctic plankton communities that form the basis of marine food webs is changing, as are the distribution and abundance of a variety of invertebrate, fish, and marine mammal species.

Find the summary report here:

https://www.amap.no/documents/doc/arctic-climate-change-update-2021-key-trends-and-impacts.-summary-for-policy-makers/3508

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s